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Breast Lesions on Sonograms:
Computer-aided Diagnosis
with Nearly Setting-
Independent Features and
Artificial Neural Networks'

PURPOSE: To develop a computer-aided diagnosis (CAD} algorithm with setting-
independent features and artificial neural networks to differentiate benign from
malignant breast lesions.

MATERIALS AND METHODS: Two sets of breast sonograms were evaluated. The
first set contained 160 lesions and was stored directly on the magnetic optic disks
from the ultrasonographic (US) system. Four different boundaries were delineated
by four persons for each lesion in the first set. The second set comprised 111 lesions
that were extracted from the hard-copy images. Seven morphologic features were
used, five of which were newly developed. A multilayer feed-forward neural network
was used as the classifier. Reliability, extendability, and robustness of the proposed
CAD algorithm were evaluated. Results with the proposed algorithm were com-
pared with those with two previous CAD algorithms. All performance comparisons
were based on paired-samples t tests.

-RESULTS: The area under the receiver operating characteristic curve (A,) was

' 0.952 = 0.014 for the first set, 0.982 = 0.004 for the first set as the training set and
the second set as the prediction set, 0.954 * 0.016 for the second set as the training
set and the first set as the prediction set, and 0.950 = 0.005 for all 271 lesions. At
the 5% significance level, the performance of the proposed CAD algorithm was
shown to be extendible from one set of US images to the other set and robust for
both small and’ large sample sizes. Moreover, the proposed CAD algorithm was
shown to outperform the two previous CAD algorithms in terms of the A, value.

CONCLUSION: The proposed CAD algorithm could effectively and reliably differ-
entiate benign and malignant lesions. The propoSed morphologic features were
nearly setting independent and could tolerate reasonable variation in boundary
delineation.
© RSNA, 2003

Breast cancer is one of the leading causes of death for women in many countries (1). For
early detection of breast cancer, mammography is currently the most widely used screen-
ing modality, but it has a low negative predictive value. Many investigators have found
that more than 60% of masses referred for breast biopsy on the basis of mammographic
findings are actually benign (2,3).

Breast sonography was shown to be an effective adjunct to mammography in reducing
the number of negative biopsy results (4-8). For example, with deliberately devised
sonographic features, Stavros et al (7) were able to attain the overall sensitivity, specificity,
accuracy, positive predictive value, and negative predictive value of 98.4%, 67.8%, 72.9%,
38%, and 99.5%, respectively. Potentiaily effective as it is, breast sonography remains
controversial for screening because interpretation of the ultrasonographic (US) images is
greatly influenced by the scanning techniques and the sonographic features of the sus-
pected abnormality. Breast sonologists with different experiences might have different
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interpretations of the sonograms. To
minimize the effect of the operator-de-
pendent nature inherent in US, many
computerized approaches have been pro-
posed to assist differentiation between
benign and malignant breast lesions (9-
15).

The general idea of computer-aided di-
agnosis (CAD) for breast sonography is to
convert the wisually extractable sono-
graphic features into mathematic models
and to characterize the lesions with the
mathematic features based on the classi-
fication schemes. The mathematic fea-
tures may be categorized into two classes,
namely, the regional features and the
morphologic features. The regional fea-
tures characterize the image properties
evolved from the intensity distribution
(eg, echogenicity, echotexture), whereas
the morphologic features describe the
shape and contour of the lesion. As an
example, with use of the mathematic fea-
tures that quantify lesion margin, shape,
homogeneity, and posterior acoustic atten-
uation pattern, Giger et al (12) achieved
values for the area under the receiver oper-
ating characteristic (ROC) curve (4,) of
0.94 and 0.87 for the entire database and
the equivocal database on'the basis of lin-
ear discriminant analysis (LDA).

Although promising performances have
been reported, CAD for breast sonography

is still impractical for routine use because.

previous mathematic features depend on
either the setting of the US systems or the
contour extraction .process. It is easy to
show that most regional features vary non-
linearly with the system setting. For in-
stance, the co-occurrence matrix used by
Garra et al (10) may fluctuate with such
system parameters as the time-gain com-
pensation, total gain, and focal depth. To
avoid this problem, many previous CAD
algorithms necessitate that all breast im-
ages be obtained with the same system pa-
rameter setting (13-15). This constraint is
clinically undesirable. On the other hand,
since the morphologic features (eg, the
contour gradients [11]) are derived from
the contour, they are more susceptible to
the contour extraction process than are the
regional features. Ideally, this problem
may be solved by using automatic contour
extraction schemes. However, automatic
contour extraction on a US image is a dif-
ficult task in general, and no satisfactory
approaches exist so far, to our knowledge.

The purpose of this study was to de-
velop a CAD algorithm with setting-inde-
pendent features and artificial neural
networks to differentiate benign from
malignant breast lesions. More specifi-
cally, this study was aimed to design a set
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of morphologic features that were nearly
indeperwtent of not only the system set-
ting but also the contour extraction pro-
cess.

MATERIALS AND METHODS

The proposed CAD algorithm was com-
posed of three essential components,
namely, feature extraction, feature selec-
tion, and classification. To relax the con-
straints on the system settings, the mor-
phologic features rather than the regional
features were adopted. The potential de-
pendence of the morphologic features on
the contour extraction process was mini-
mized by capturing important topologic
properties of the lesions, which may not
vary drastically with the delineated con-
tour. Feature selection was necessary to al-
leviate dimensionality (16). A set of essen-
tial morphologic features that yielded the
curse of the best performance was selected
on the basis of stepwise logistic regression
(17). Classification was accomplished with
a multilayer feed-forward neural network
(MFNN) (18) on the basis of the essential
morphologic features. The advantage of
the MFNN is that arbitrarily complex con-
vex separation surfaces can be approxi-
mated.

Study Subjects and Image
Acquisition

Two sets of breast US images were used
in this study that were selected randomly
from the database of a medical center in
Taiwan. The image data were collected
during a period-of 4 years. The institu-
tional review boards agreed that the pa-
tient images and clinical information
could be used for study without written
consent if anonymity was maintained.
This regulation was carefully followed in
the present study.

The first set of sonograms was obtained
from September 9, 1996, to June 6, 2000,
in 160 female patients (age range, 16—85
years; mean age, 46 years). The sono-
grams depicted 160 breast lesions, in-
cluding 42 cysts, 49 fibroadenomas, and
69 carcinomas, that were pathologically
proven. They were stored directly (by us-
ing the system built-in function) on a U§
system (HDI 3000; Advanced Technolog-
ical Laboratory, Bothell, Wash) equipped
with a broadband 5-10-MHz linear elec-
tronically focused transducer and cine
loop capability.

The second set of sonograms was ob-
tained from January 1, 1997, to Decem-
ber 31, 1998, in 111 women (age range,
18-82 years; mean age, 42 years). The

sonograms depicted 111 breast lesions
that were pathologically proven, includ-
ing 40 fibroadenomas and 71 carcino-
mas. They were obtained with the same
US system that was used for the first set,
Unlike the first set of US images, the sec-
ond set comprised hard-copy images. The
lesions were extracted from these sono-
grams by first digitizing these images
with film scanners (HP6300C; Hewlett-
Packard, Palo Alto, Calif).

No constraint was imposed on the sys-
tem settings during acquisition of these
images. The sonologists were free to ad-
just the system settings to obtain the best
views. In both sets, the lesion boundaries
were delineated manually. The first set of
lesions served as the primary basis for
performance evaluation and comparison
of the complete morphologic and regional
information preserved in the directly
stored US images. To take into account the
potential variation of delineation among
different persons, the first set of lesions was
delineated by four graduate students
(K.C.H. and others), and each student was
supervised by one of four attending physi-
cians (Y.H.C., C.M.T., H].C., S.Y.C.) with
22, 7, 7, and 3 years of experiences in
breast sonography, respectively. For each
lesion, size variation was defined as the
ratio of the SD to the mean of the sizes of
the four delineated lesion boundaries. The
mean = SD of variations of lesion size for
all lesions in the first set was 9.1% = 7.7.

The second set of lesions served as a
larger number of samples with which to
evaluate the extendability and robust-
ness of the proposed CAD algorithim. The
second set of lesions was delineated by
only one graduate student (G.S.H.), un-
der the supervision of an attending phy-
sician (Y.H.C.) with 22 years of experi-
ence in breast sonography. Two of the
five graduate students (K.C.H., G.S.H.)
were involved in development of the
CAD algorithm.

Feature Extraction

Seven morphologic features were ex-
tracted from each lesion to account for
such sonographic features as shape, con-
tour, and size. Five of these morphologic
features were newly developed, including
the number of substantial protuberances
and depressions (NSPD), lobulation in-
dex (LI), elliptic-normalized circumfer-
ence (ENC), elliptic-normalized skeleton
(ENS), and long axis to short axis (L:S)
ratio. The other two features were clini-
cally usetul indicators (19): depth-to-
width (I2:W) ratio and size of the lesion.

NSPD.—The spiculation (7) and irregu-
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convex hull

lesion.contour

protuberances

P

4— depressions

Figure 1. Sonogram shows the inner gray
contour as the lesion border and the outer
white polygon as the convex hull of the jesion.
Protuberances and depressions in the malig-
nant breast lesion are indicated.

Schematic shows lobes in a lesion,
where {w,, w;, wy, w,} are four representative

- concave points in Q and {4, A,, Ay, A,) are the
sizes of the lobes.

Figure 2.

lar shape and contour (8) of a lesion are
two important sonographic features that
characterize a malignant breast lesion.
The NSPD is an effective descriptor in a
lesion to quantify these two sonographic
features. With a geographic analogy, a
protuberance and a depression are like a
peninsula and a bay, respectively. As an
examnple, Figure 1 shows typical protu-
berances and depressions in a malignant
breast lesion. Since protuberances and
depressions may easily result from a wob-
bly delineation process, as described in
the Appendix, only the substantial pro-

‘tuberances and depressions defined by

the representative convex and concave
points, respectively, were used to charac-
terize a breast lesion.

As derived in the Appendix, given a
threshold &, let A =[x, A5, . ., Ap} and
Q) = {wy, wy,. .., w,) be the set of repre-
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Figure 3. Sonogram shows the equivalent el-
lipse (thin line) of a malignant breast lesion,
the boundary of which is marked by the thick
line.

sentative convex and concave points of a
lesion boundary, where p and « are the
numbers ot points in each set. The NSPD,
denoted by NSPD(8,), is defined as p + 4,
where 8, € {20° 307, 40°, 50°, 60°}. Ide-
ally, a malignant breast lesion has a larger
NSPD.

LI—LI was devised to characterize the
size distribution of the lobes in a lesion.
As illustrated in Figure 2, a lobe is defined
as the gray region enclosed by the lesion
contour and the dashed line connected
by two adjacent representative concave
points. The size of the lobe is the area of
the gray region. Suppose a breast lesion
has N, lobes and the size of the ith lobe is
A, I =1,toN,. Let A,.« and A, denote
the sizes of the largest and the smallest
lobes. The LI is then defined as

A max A nin

Ll= .
-1 iA
N, &

The LI can correctly characterize a be-
nign lesion with multiple large lobes of
similar sizes. This type of benign lesion
may be misclassified as a malignant le-
sion with the NSPD.

ENC.—Anfractuosity is a common
morphologic characteristic of malignant
lesion boundaries that provides at least
two visually appreciable geometric fea-
tures. One feature is the multiple protu-
berances and depressions that may be
well described with the NSPD. The other
feature is the lengthened circumference
due to the circuitous boundaries that de-
fine the protuberances and depressions.
Since the boundary of a smaller lesion
would appear to be more winding than

that of a larger lesion with the same cir-
cumference, the circumference itself is
not a good descriptor with which to char-
acterize the anfractuosity of the lesion
boundary. Alternatively, a more reason-
able approach is quantification of the an-
fractuosity with the percentage of cir-
cumference increment relative to a
lesion-dependent baseline. An ideal base-
line would be a smooth curve such that
the lesion boundary would look like
twining around the curve.

To quantify the anfractuosity of a le-
sion contour, the circumterence ratio of
the lesion and its equivalent ellipse is
proposed, which is termed the ENC. The
equivalent ellipse of a lesion (20,21) isan
ellipse with the same area and center of
mass as those of the lesion when the in-
teriors of the lesion and its equivalent
ellipse are both set to the same constant
gray level. For instance, Figure 3 shows
the equivalent ellipse and boundary of a
malignant lesion. Perceptually, one can
see that the equivalent ellipse roughly
captures the shape of the lesion, and the
lesion boundary meanders around the
equivalent ellipse.

ENS.—A skeleton is an effective repre-
sentation of a region (22) that is used
trequently in such areas as computer vi-
sion and pattern recognition.' Let R de-
note a region and B, the set of boundary
points of the region R. The skeleton of a
region, R, is a set of points X that satisfy
for each skeleton point x € X, where x is
within R and there exist at least two
boundary points, p; and p;, in By such
that d(x, p;) = d(x, pj) = min {d(x, p)lp, €
By}, where d( -) is any preterred distance
mmetric (eg, Euclidean, city block). With.
the malignant breast lesion shown in Fig-
ure 3 as an example, the skeleton of the
lesion is given in ligure 4.

The skeleton is sensitive to the anfrac-
tuous property of the lesion boundary.
The more protuberances and depressions
contained in the lesion boundary, the
more complex the skeleton is. Therefore,
it seems to be reasonable to quantify the
shape complexity by the number of
points in the skeleton. Nevertheless, the
number of skeleton points is also a func-
tion of the lesion size. Just as for the ENC,
to eliminate the size etfect, it is suggested
that the number of skeleton points be
normalized by the circumference of the
equivalent ellipse of the lesion, which
gives the ENS.

In addition to these four descriptors—
NSPD, LI, ENC, and ENS—which capture
the contour and shape characteristics,
three more mathematic features are con-

Chen et al
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sidered to incorporate two clinically use-
ful indicators. The first feature is the D:W
ratio of the lesion (11,12,19). The depth
and the width of a lesion are the horizon-
tal and vertical edge lengths, respec-
tively, of the minimal circumscribed rect-
angle of the lesion. The larger the D:W
ratio, the more likely the lesion is malig-
nant. Since the D:W ratio may vary with
the scanning angle and the compressing
pressure, however, we suggest use of an-
other quantity to describe the shape of
the lesion, namely, the L:S ratio. The L:S
ratio is the length ratio of the major
(long) axis to the minor (short) axis of
the equivalent ellipse of the lesion.
Clearly, the L:§ ratio is independent of
the scanning angle but may be affected
by the compressing pressure. The last fea-
ture is the size of the lesion (ie, the area
within the lesion boundary). Clinically,
the larger the breast lesion, the more
likely the lesion is malignant.

Feature Selection and Classification

Feature selection is usually used to se-
lect a set of features that potentially yield
the best performance with the given clas-
sifier. These selected features are referred
to as the substantial features. The classi-
fier is then trained with the substantial
features to determine the mathematic
model that describes the relation of these
features. I

The substantial features were selected
for each training data set on the basis of
the forward sequential search approach
(23) with the logistic discrimination
function (17). To minimize the estima-
tion bias (16}, the classification accuracy
n(Y) for a feature set ¥ was evaluated by
means ot the leave-one-out cross-valida-

tion strategy for each training data set. =

More specifically, set the counter n. = 0,
for every /; in the training data set ¢ with
m data, then construct the logistic dis-
crimination function with the training
data @, = & — {/} with the feature set Y. {f
I; is predicted correctly with the derived
logistic discrimination function, then in-
crease n. by 1. After all /; values have been
evaluated, then compute n(Y) = n/im.

Feature selection was performed in two
stages tor each training data set. In the
first stage, the best NSPD value was se-
lected from five candidate NSPD values
that corresponded to five 6, values (ie,
9, € {207, 30°, 40°, 50°, 60°)). Then, in the
second stage, the selected NSPD value
along with the other six features were
used to select the essential features that
yielded the best classification accuracy
for the underlying training data set.
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Figure 4.

Sonogram shows the skeleton of a
malignant breast leston. The boundary of the
lesion is marked by the thick line, and the
skeleton is indicated by the thin line segments.

The classifier used in the present study
is an MFNN, Once the essential features
were selected by means of the logistic
discrimination function for a set of train-
ing data @, the training data were used to
train the MFNN to divide the training
data into benign and malignant catego-
ries. As depicted in Figure §, the MINN
used in this study was a two-layer feed-
forward neural network with one hidden
layer. The number of inputs for the
MFENN was set to be the same as the num-
ber of essential features, and the number
of neurons in the output layer was sét to
1 for the underlying two-class classifica-
tion. Some suggestions were made previ-
ously (eg, the Kolmogorov theorem [24])
to determine the number of neurons in
the hidden layer, but none of them led to
satistactory performance. Instead, the
number of neurons in the hidden layer
was determined through exhaustive ex-
periments to be two to 10 neurons. As a
result, the number of neurons in the hid-
den layer was set to two because results
with two neurons gave the best perfor-
mance for almost all cases evaluated.

The training algorithm used to train
the MEFNN was the widely used error
back-propagation  training algorithm
(18). The training data with the essential
features were fed into the MFNN in a
cyclic manner. For each datum, the esti-
mated output o was computed on the
basis of the synaptic weights determined
in the previous iterations and the sigmot-
dal activation function ¢. The discrep-
ancy between the desired output and the
estimated output was back propagated to
modify the synaptic weights until the
discrepancy was within the acceptable

Zj
Zy
inputs hidden output
layer layer
Figure 5. Two-layer feed-forward neural net-

work used for classification. z; = the ith fea-
ture, v; = the weight of the synapse that con-
nects the jth input to the ith neuron in the
hidden layer, y, = the ith neuron in the hidden
layer, w, = the weight of the synapse that con-
nects the ith neuron in the hidden layer to the
output, ¢ = the sigmoidal activation function,
and o = the output,

range. Since the final output ¢ was a
number between 0 and 1, a threshold
T~ where NN is neural network, was
required to assign the datum to the be-
nign or the malignant category. In the
present study, Ty was determined on
the basis of the value that resulted in a
dichotomization with the best classifica-
tion accuracy for the training data, or
Twn varied from O to 1 to generate the
ROC curve.

Comparative Performance Analysis

Five experiments were conducted in
the present study for performance analy-
sis. Two performance measures were re-
ported for each analysis. One measure
was the A, value, which was calculated by
using commercially available statistical
software (SPSS for Windows, version 10;
SPSS, Chicago, lll). The other measure
was the best classification accuracy (TP +
TN)/(TP + TN + P + FN) along with the
associated sensitivity (TP/[TP +  FNJ),
specificity (TN/[TN + FP]), positive pre-
dictive value (TP/[TP -+ FP]), and negative
predictive value (TN/[TN + FN]), where
TP is the number of true-positive tindings
(ie, a malignant lesion is considered to be
malignant); TN, true-negative; FP, false-
positive; and FN, false-negative.

For performance comparison, the A,
values were used because the best classi-
fication accuracy is not necessarily the
preferred criterion for classification. Some-
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TABLE 1

Notations Denoting Various Implementations

Chen

X~=n n=1-4

W, and oy

Notation Implementation
C160 With first set of US images on the basis of the proposed CAD algorithm with feature selection
C160A With first set of US images on the basis of the proposed CAD algorithm without feature selection
c271f With first set of US images as training set and second set as prediction set on the basis of proposed CAD algorithm
C271r With second set of US images as training set and first set as prediction set on the basis of proposed CAD algorithm
C271LC With both sets and evaluated by means of leave-one-out cross vatidation
LDAG e With first set of US images on the basis of the Ciger algorithm
MFNNg . With first set of US images on the basis of the Giger algorithm and MFNN as the classifier
MFNN With first set of US images on the basis of the Chen algorithm

X with n'" set of lesion boundary drawn from the first set of US images and X € {C160A, C271f, C271r, C271LC,
LDAGiger MFNNGo.,, MFNNC ..}
Mean and SD of X = n, n = 1-4, X € {C160A, C271f, C271r, C271LC, LDA

MENNG gers MENN (o}

Cigers

times, one would rather have a higher sen-
sitivity or specificity than have the best
accuracy. Except for the third experi-
ment, all performance measures were de-
rived on the basis of the leave-one-out
cross-validation strategy.

To evaluate the reliability of the pro-
posed morphologic features, in the first
experiment, denoted as C160, the pro-
posed CAD algorithm was evaluated with
the four sets of boundaries drawn inde-
pendently by four people for each of the
160 breast lesions in the first set of US
images. To justify the necessity for fea-
ture selection, the second experiment,
denoted as C160A, repeated the first ex-
periment but without feature selection
(ie, all seven features were used bi/ the
MENN classifier). A paired-samples ¢ test
was used to test if incorporation of fea-
ture selection would yield a better perfor-
mance (ie, it C160 was significantly bet-
ter than C160A), with the significance
level set at o« = .0S-

Results of the third experiment vali-
dated the extendibility of the proposed
CAD algorithm. Since the two sets of US
images used in the present study origi-
nated from two archiving media, degra-
dation for the boundary definition of the
lesions that was caused by the acquisition
procedure or the archiving medium was
potentially different for each set. There-
fore, these two sets of US images might be
considered as samples from two different
sample spaces. In this experiment, we at-
tempted to investigate how well the clas-
sifier derived on the basis of images from
one sample space could be extended to
those from the other sample space. Two
implementations were performed. One
implementation was performed with the
first set of US images as the training set
and the second set as the prediction set,
which was denoted as C271f. In reverse,
the other implementation was performed
with the second set of US images as the
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training set and the first set as the predic-
tion set, which was denoted as C271r.
The training set was trained on the basis
of the leave-one-out cross-validation
strategy. Recall that only the first set of
US images had four sets of boundaries.
Paired-samples ¢ tests were used to test it
C271f and C271r had the same or better
performance than did C160 and if C271f
and C271r had the same performance
with the significance level set at « = .05.

The fourth experiment, denoted as
C271LC, was performed to investigate
the robustness of the proposed CAD al-
gorithm. That is, we attempted to evalu-
ate how well the performance achieved
in the first experiment with a smaller
sample size could be reproduced with a
larger number of samples from heteroge-
neous sample spaces. All 271 breast le-
sions were involved in the fourth exper-
iment, and the leave-one-out cross-
validation strategy was used. To validate
the robustness of the proposed CAD al-
gorithm, paired-samples t test was used
to determine if C271LC had the same
performance as C160 with the signifi-
cance level set at o = .05.

For comparative study, in the fifth ex-
periment, the proposed CAD algorithm
was compared with two previous CAD
algorithms with the first set of breast le-
sions. The first algorithm was proposed
by Giger et al (12), which was denoted as
LDAG per- The Giger algorithm included
four mathematic features, namely, nor-
malized radial gradient, D:W ratio,
coarseness, and the mean gray-level dif-
ference between the region of interest
within the lesion and that posterior to
the lesion, denoted by u, — w,. The clas-
sification scheme was the LDA. Since the
MFENN is usually superior to the LDA, for
a fair comparison with our approach, as a
modified implementation, which was de-
noted as MFNNg; ., the MFNN was used
to replace the LDA. The number of neu-

rons in the hidden layer was also deter-
mined by searching in the range of two
to 10 neurons. As a result, 10 neurons
were used in the hidden layer for the
modified Giger algorithm.

The second CAD algorithm to be com-
pared with the proposed CAD algorithm
was proposed by Chen et al (13), which
was denoted as MFNN,,,. The Chen al-
gorithm was based solely on a texture
feature (ie, normalized autocorrelation
coefficients obtained from a rectangular
region of interest that enclosed the le-
sion). The size of the region of interest
was 1-2 mm extended from the lesion
margin in all directions. The feature vec-
tor contained 5§ X § autocorrelation coef-
ficients. The classifier used by Chen et al
(13) was an MFNN—with 2§ inputs, 10
hidden nodes, and one output node—
that was also trained with the error back-
propagation training algorithm.

To test it C160 had significantly better
performance than that of LDAg.,
MFNNg o ald MFNNe.y, ., paired-sam-
ples f tests were applied with the signifi-
cance level set at o« = .05. Moreover, a
paired-samples t test was used to deter-
mine the relative pertormance among
these three implementations.

In addition to these five experiments,
the performance of each individual fea-
ture, including the proposed seven fea-
tures and the Giger features, was evalu-
ated by means of logistic discrimination
analysis (17) based on the leave-one-out
cross-validation strategy. Paired-samples
t tests were used to compare the perfor-
mances of every pair of individual fea-
tures. It should be emphasized that all
algorithms were evaluated for statistical
robustness with four collections of lesion
boundaries. As a summary, Table 1 lists
the notations for the implementations
performed in this study.
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TABLE 2
Results of First Experiment with First Set of Breast Lesions
ROC Curve
Experiment A, SE* Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
C160-1 0.938 0.023 91.9 95.6 87.0 90.6 93.8
C160-2 0.941 0.021 90.6 97.8 81.2 87.3 96.6
C160-3 0.962 0.014 94.4 97.8 89.9 92.7 96.9
C160-4 0.966 0.015 94.4 95.6 92.8 94.6 94.1
[T 0,952 0.018 92.8 96.7 87.7 91.3 95.4
Teren 0.014 0.004 1.9 1.3 4.9 31 1.6
Note.—PPV = positive predictive value, NPV = negative predictive value.
* Standard error of the ROC curve,
TABLE 3
Means and SDs of Performances Achieved in C160A, C271f, C271r, and C271LC
ROC curve
Mean and SD Ay SE* Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
[T 0.940 0.022 91.1 94.5 86.6 90.3 92.4
T160a 0.019 0.005 1.4 2.7 3.2 2.0 3.4
Weariy 0.982 0.010 94.8 90.6 97.2 94.9 94.9
Teary 0.004 0.001 0.9 1.3 1.6 2.8 0.6
[T 0.954 0.016 91.4 95.1 86.6 90.4 93.2
Teanny, 0.016 0.004 1.7 2.9 3.6 2.3 3.7
Weartic 0.959 0.011 92.8 96.7 87.7 91.3 954
Ocanic 0.005 0.001 1.9 1.3 4.9 3.1 1.6
Note.—PPV = positive predictive value, NPV = negative predictive value.
* Standard error of ROC curve.

RESULTS

I

Results of the first experiment for the re-
liability evaluation of the proposed CAD
algorithm are reported in Table 2. For
each implementation, the A, value and
standard error of the ROC curve were
listed, as well as the performance data at
the best classification accuracy, including
accuracy, sensitivity, specificity, positive
predictive value, and negative predictive
value. Table 2 shows that the proposed
CAD algorithm has achieved reasonably
high performances for all four sets of le-
sion boundaries in terms of the A, value
and the classification accuracy, the
means of which, denoted as p -4, were
as high as 0.952% and 92.8%, respec-
tively. Moreover, differences in perfor-
mance induced by the potential varia-
tions in boundary definitions of the four
sets of lesion boundaries were not signif-
icant. The SDs of the A, values and the
best classification accuracies, denoted as
e Were 0.014% and 1.9%, respec-
tively. On the basis of the experimental
results, the proposed CAD algorithm po-
tentially may be capable of tolerating the
variations in boundary definition due to
manual delineation by different persons.

For the second experiment, the mean
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and SD of the A, value, which are labeled
as pegon and ogpg0q, respectively, and
the performance data at the best classifi-
cation accuracy are sumimarized in Table
3. The test hypothesis and result of the
paired-samples t test, labeled as T, to
compare C160 with C160A are given in
Table 4. Since P = .020 < a = .05, the null
hypothesis should be rejected (ie, C160
was superior to C160A at the 5% signifi-
cance level), which justiﬁell the advan-
tage of adopting feature selection in the
proposed CAD algorithm. The means and
SDs of the A, values and the performance
data at the best classification accuracy for
C271f, C271r, and C271LC are provided
in Table 4. These three implementations
attained reasonably high performances,
which were greater than 0.954% and
91.4% for the mean A, and the mean best
accuracy, respectively.

For patrwise performance comparisons
between C160 versus C271f, C160-
C271r, C271f-C271r, or C160-C271LC,
the test hypotheses and results of four
corresponding paired-samples t tests—la-
beledas T,, T,, T,, and Ty, respectively—
are listed in Table 5. With P = .019 < o =
.05, results of the paired-samples t test T,
suggested that the null hypothesis be re-
jected, which implied that the perfor-

Breast Leslons on Sonograms: Setting-independent Computer-alded Dlagnosls -

mance of C271f was significantly higher
than C160 at the 5% significance level.
Results of the paired-samples ¢ tests T,-T
suggest that these three null hypotheses
be accepted, since all three P values were
greater than « = .05. In other words, at
the 5% significance level, the perfor-
mance of C160 was the same as that of
C271r and C271LC, and there was no
significant difference between the perfor-
mances of C271f and C271r. From the
test results of T,-T,, it might be con-
cluded that in comparison with use of
only the first set of US images, the pro-
posed classifier derived on the basis of
the images from one sample space might
be generalized to the images from an-
other sample space without performance
degradation at the 5% significance level.
Moreover, the test result of Ty validated
that the proposed CAD algorithm was
robust in the sense that its performance
would be the same for both small and
large sample sizes at the $% significance
level.

The significant features selected for
classification varied with the collection
of lesion boundaries, and, more specifi-
cally, they varied with the training set.
Table 5 lists the most frequently selected
features for each collection of lesion
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TABLE 4

Results of Paired-Sample ¢ Tests to Compare Means of Different Implementations on the Basis of the Proposed CAD

Myt parso = peanic # 0

Algorithms
Paired Differences
95% Ci*
/7
Comparison between Two Algorithms* Mean Lower Upper t Value
7, [ ot b = perna =0 1.18 % 1072 3.86 X 107} NA 3.506 0.020:
Pl Hat perso — Meison 7 0 ' ' ’ ’
Hy: - =0
Ty { H:. ZEI“Z - ﬁ;;::<0 -2.98 x 1072 NA —~1.01 % 10-2 -3.567 0.0191
. 6
Hot perso — mean =0
Ty { HZ' Z;‘Izz B #Cz: 0 -1.75%x 1073 -6.32 x 1077 2.82 %1073 -1.219 0.31
Hq: - ,=0 _
T { Hy Zi::: _ ﬁjz;: s 2.80 X 1072 ~1.43 x 107 5.74 % 1072 3.028 0.056
Hy: - =0 -
T: { 0 Baso — pazuc -7.25 %107 ~215% 107* 7.00 x 107? ~1.619 0.204

fNA = not applicable.
¥ Significant at the level of « = .05.

* Hy = null hypothesis, H, = alternative hypothesis.

O:W ratio

TABLE 5
Most Frequently Selected Features for Each Collection of Lesion Boundaries
US Image
Set . 81* 82* 83~ B4
it NSPD and 40°, ENC  NSPD and (40°), ENS  NSPD and 40°, ENS  NSPD and 50°
1+ 2% NSPD and 40°, NSPD and 407, ENS NSPD and 40° NSPD and 40°

t First set of US images.

Note.—Given N lesion boundaries, the frequency of a feature was the number of times that the
feature was selected by the N possible training sets in the leave-one-out cross-validation process.
* Bn: the n'" set of lesion boundaries drawn from the first set of US images, n = 1-4.

! Four combinations of the first and second sets of US images, each of which contained one set
of lesion boundaries from the first set and the lesion boundaries from the second set.

§ Features selected for only the second set of US images, with one set of delineated lesion
boundaries, were NSPD and 40°, L:S ratio, and D:W ratio.

e

boundaries. Recall that feature selection
was performed on the basis of the leave-
one-out cross-validation strategy. Given
N lesion boundaries in a collection, the
frequency of a feature was the number ot

- times that the feature was selected for the

N possible training sets in the leave-one-
out cross-validation process. From Table
5, it is clear that NSPD was the most
important feature, which might be either
NSPD and 40° or NSPD and 50°. Further-
more, ENS, ENC, L:S ratio, or D:W ratio
might be combined with NSPD to
achieve a better performance.

With the first set of US images, the
mean and SD of the A, value and the
performance data at the best classifica-
tion accuracy for LDAgpe,, MFNNg,.
and MINN, ., are provided in Table 6.
The performances attained with LDA ¢y,
and MFNN, ., were substantially lower
than those reported in references 12 and
13. For pairwise performance compari-
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sons among C160, LDAg .., MFNNg e,
and MFNN..,, the test hypotheses and
results of the paired-samples ¢ tests are
given in Table 7. With P values less than
a = 0.05, all null hypotheses should be
rejected. [t might be concluded that the
relative performances of these four algo-
rithms were MFNNeyp.,, < LDAG 0 <
MFNN ;e < C160, where A < B denotes
that A is worse than B at the 5% signifi-
cance level,

To evaluate the performance of each
individual feature, Figures 6 and 7 show
the mean A, and the mean best accuracy
for each proposed feature with the first
set of US images and all 271 US images,
respectively. Results of paired-samples ¢
tests suggested that NSPD, LI, ENS, and
ENC are better than lesion size, L:S ratio,
and D:W ratio at the 5% significance
level in both Figures 6 and 7. For exam-
ple, consider four pairwise comnparisons,
including NSPD lesion size, LI lesion size,

ENC lesion size, and ENS lesion size. The
P values for these four pairs were .01,
043, .025, and .03, respectively, when
the first set of US images were used, and
they were .005, .02, .017, and .00S, re-
spectively, when all 271 US images were
used. The null hypothesis for each pair A
versus B was g, — g = 0, where u, and
wg stand for the mean A, values attained
with features A and B, respectively. Since
all these P values were less than o = 0.05,
NSPD, LI, ENC, and ENS were better than
lesion size at the 5% significance leve],
Furthermore, results of paired-samples t
tests suggest that the performances of
NSPD, Li,-and ENC remained the same
for different sample sizes at the 5% sig-
nificance level. That i{s, NSPD, LI, and
ENC were robust. The P values of these
three tests were .204, .405, and .587, re-
spectively. Notably, the mean A, values
and the mean best accuracies of NSPD
in both Figures 6 and 7 were greater
than 0.94 and 0.91, respectively. In par-
ticular, use of NSPD or ENS alone could
outperform LDAg,;,.,, MFNNg., and
MENN( . at the 5% significance level.

Figure 8 demonstrates the mean A, and
mean best accuracy for each Giger feature
with the first set of US images. On the
basis of results of paired-samples ¢ tests, it
could be shown that the proposed NSPD,
ENC, and ENS were significantly better
than all the Giger features, with P values
less than .001 when the first set of US
images were used. The proposed LI and
lesion size had the same performance as
normalized radial gradient at the 5% sig-
nificance level.
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TABLE 6
Means and SDs of Performances Achieved in LDA¢g.,, MFNN, ., and MFNN(,
ROC curve
Data A, N Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)
T 0.844 0.033 81.6 87.4 73.9 82.2 82.6
Tioagn 0.023 0.003 24 7.1 12.2 5.9 6.0
Kertrg e 0.896 0.027 84.8 83.2 87.0 89.6 80.1
e 0.014 0.003 1.8 5.6 4.9 3.1 4.7
Fatenrnicn 0.731 0.040 71.7 721 71.4 66.1 77.5
TN A, 0.033 0.002 24 8.2 7.7 4.6 43
Note.—PPV = pasitive predictive value, NPV = negative predictive value.
* Standard error of the ROC curve.
TABLE 7 i
Paired-Sample t Tests to Compare Means of C160, LDAg; ., MFNNg, ., and MENN¢, .,
Paired Differences
95% Ci
P
Comparison between Two Algorithms* Mean Lower Upper! t Valuei
Ho! tcreo — =0
T { L bereo T Puosa 1.08 % 107! 7.60 % 1072 NA 7.944 002
A HC160 T MiDAcge
. Hoi tciso = Hasangy. =0 s s
T { Hat erso = by > O 5.60 X 10 3.81 x 10 NA 7.343 .003
Ha: - ipen E 0
Ty: { 0 Hcreo T Hane - 2.21 x 107! 1.69 x 107" NA 10.147 .001
Hal 1cre0 = Hoatnncen, > 0
Hot Barnmeg, — Mioacy, =0 I _
: B ; . X . . .
Ty { el Beatriiigun = Mioag > 0 5.20%x 10 2.86 X 10 NA 5.226 007
Ho: : - 3 =<0
Tio: { 07 My, T Mty - 1.65% 10" 1.26 x 10" NA 10.116 001
Ha: MsdbniNegee — MMENNCm = 0
Ho: - n =0
T { o) KiDdcy, — Hatinic 113 x 107" 6.27 X 1072 NA 5.319 .006
Hal Bidacqs = Hasranen = 0
* H, = null hypothesis, H, = alternative hypothesis, 4
t NA = not applicable.
! Differences in all comparisons significant at the fevel of « = .05.

DISCUSSION

The performance of radiologists in the
interpretation of mammograms and
breast sonograms is said to be less than
ideal (2,7). Although performance can of-
ten be improved by having two radiolo-
gists review mammograms or two so-
nologists review US images, this strategy
is not easily available. Therefore, varieties
of CAD efforts have been attempted in
the imaging evaluation of breast diseases.
Artificial neural networks have been ap-
plied in mammography and proved to be
of potential help in the mammographic
decision-making task of distinguishing
between benign and malignant lesions
(25). To our knowledge, however, there is
only a limited number of articles that
deal with CAD in breast sonography (9—
15), and the previously proposed CAD
algorithms are not yet mature for clinical
utility.

On the basis of the high performance
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mean and low performance variation
achieved with four sets of lesion bound-
aries in the first, third, and fourth exper-
iments in the present study, the proposed
CAD algorithm was shown to be an effec-
tive and robust approach to differentia-
tion of benign from malignant breast le-
sions. Results of the third and fourth
experiments further validated the ex-

_tendibility and robustness of the pro-

posed CAD algorithm. At the 5% signifi-
cance level, the promising results
obtained in these two experiments sug-
gest that with the proposed CAD algo-
rithm, the classifier trained by the images
directly captured and stored in the elec-
tronic storage media may be applied to
the hard-copy images and vice versa.
Moreover, the proposed CAD algorithm
was robust in the sense that performance
remained the same for both small and
large sample sizes.

The high performance of the proposed
CAD algorithm resulted mainly from the

Breast Leslons on Sonograms: Setting-independent Computer-aided Diagnosis -

effective and reliable morphologic fea-
tures and incorporation of feature selec-
tion. Results of the evaluation of each
individual feature showed that NSPD,
ENC, and ENS were better than all the
Giger features and even only one of the
first two would outperform LDAg;.,,
MFNN;er and MFNN.p,,, at the 5% sig-
nificance level. On the other hand,
NSPD, LI, and ENC were shown to give
reliable performance for different sample
sizes. They were intrinsically reliable be-
cause a small local variation in contour
delineation would not lead to a dramatic
change in feature values. For example,
the NSPD was used to count NSPDs in a
lesion boundary. Reasonable variation in
contour delineation might alter the
shape of the lesion boundary but would
not cause a big change in the NSPD. For
LI and ENC, any reasonable variation in
local delineation would be diluted by
their own normalization factors, which
were the mean area of the lobes for Lt and
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Figure 6. In bar graph, each pair of bars illustrates the mean A, value and mean best classifica-

tion accuracy achieved with a proposed morphologic feature with the first sct of US images. Error
bars indicate 1 SD. The first four features (ie, NSP'D, LI, ENS, and ENC) are better than the other
three at the 5% significance level,
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Figure 7. In bar graph, each pair of bars depicts the mean A, value and mean best classification

accuracy achieved with a proposed morphologic feature when applied to four collections of
lesion boundaries. Each collection comprised one of the four sets of lesion boundaries in the first
set of US images and the tesion boundartes in the second set of US images. Errot bars indicate 1
SD. At the 5% significance level, the first four features (ie, NSPD, LI, ENS, and ENC)) are better than
the other three. Moreover, the performances of NSPD, L, and ENC are the same with the first set
of US images and with all 271 images.

ture, while accounting for the problem of
“curse of dimensionality.” The curse of

the circumference of the equivalent el-
lipse for ENC. Since these normalization

factors were usually on the order of 100
or 1,000, the potential value changes in
LI'and ENC would be small relative to the
dynamic ranges of these four features.
On the basis of the effective features,
feature selection was a necessary and
beneficial step to further integrate the
differential power of each individual fea-
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dimensionality suggests that the sam-
pling density of the training data is too
low to promise a meaningful estimation
of a high-dimensional classification func-
tion with all seven features with the
available finite number of training data
(16). As verified in the second experi-
ment, performance with feature selection

(te, C160) was superior to that without
feature selection (C160A). 1t should be
emphasized that feature selection is basi-
cally a learning process, and the best fea-
tures vary as the training data change,
This finding means that for a practical
CAD system, feature selection should be
performed frequently to allow learning
from the changing training data sets.

The proposed CAD algorithm was
shown to be better than the algorithms of
Giger et al (12) and Chen et al (13). Setting
dependence is one of the major reasons
that the previous CAD algorithms are im-
practical for clinical use in the differentia-
tion of benign from malignant breast le-
sions. This problem is particularly serious
for those algorithms based on the regional
features. For example, the Chen algorithm
(13) was able to attain A, values and clas-
sification accuracy as high as 0.956 and
95%, respectively, when the system setting
was basically fixed. Results of the fifth ex-
periment, however, showed that the Chen
algorithm performed poorly with the first
set of US images, which were acquired
without any constraint imposed on the
system setting. Any nonlinear change in
the system setting may cause a nonnegli-
gible variation in the normalized autocor-
relation coefficients used with the Chen
algorithm, even for the same lesion.

Similarly, the Giger algorithm (12) also
had the setting-dependence problem be-
cause of the two regional features in-
volved (ie, coarseness and mean gray-
level difference between the region of
interest within the lesion and that poste-
rior to the lesion [, — w,]). Worse than
the normalized autocorrelation coeffi-
cients, these two regional features may
give different values, even with a linear
change in the system setting. On the
other hand, the morphologic feature of
normalized radial gradient was sensitive
to the local delineation as a result of the
gradient type of information. That is, a
small zigzag in the contour might result
in a drastic change in the gradient. The
experimental result showed that the per-
formance of normalized radial gradient
was substantially worse than that of
NSPD, ENS, and ENC. Figure 8 reveals
that none of these four features could
provide sufficient differential power by
itself.

The setting dependence of the regional
features and the high sensitivity to the
local delineation might account for the
discrepancy between the high perfor-
mance reported by Giger et al (12) and
the low performance achieved in our
fifth experiment. Although the perfor-
mance improved with MFNN as the clas-
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sifier, the best performance of the Giger
mathematic features was still inferior to
that of the proposed CAD algorithm.
Moreover, the reliability of the Giger fea-
tures remained questionable because of
their setting and operator dependence.

The bar graphs in Figures 6 and 7 sug-
gest that the mathematic features based
on the aspect ratio of the lesion (ie, D:W
ratio and L:S ratio) were not effective for
differentiating a malignant from a be-
nign lesion, though D:W ratio is consid-
ered as a clinically useful indicator (19).
In particular, the L:S ratio was devised to
eliminate the dependence on the scan-
ning angle that is inherent in the D:W
ratio. The low classification accuracy of
the L:S ratio seemed to imply that the
aspect ratio of a lesion is not a useful
indicator for lesion malignancy.

In conclusion, setting independence is
clearly a crucial property for a CAD algo-
rithm to be used in practice. To assist
differential diagnosis of benign and ma-
lignant breast lesions without imposing
constraints on system settings, we pro-
pose, on the basis of findings in the
present study, a new CAD algorithm with
nearly setting-independent morphologic
features and an artificial neural network
as the classifier. The proposed morpho-
logic features were by no means compre-
hensive, though the experimental results
supported that NSPD, LI, and ENC are
effective and reliable. We believe that fur-
ther exploration of the setting-indepen-
dent regional features that may faithfully
characterize echotexture, sound trans-
mission, and angular margin would be
required to form a complete set of math-
ematic features for CAD of breast lesions.

APPENDIX

Suppose the contour of a breast lesion is
composed of N consecutive discrete points.
Let p, stand for the ith point in the contour
of a breast lesion, assuming that the points
in the contour are numbered clockwise. For
each point p,, the depression depth h; is the
shortest distance from p; to the convex hull
of the breast lesion. The convex hull of a
breast lesion is the smallest convex set of
points that enclose the lesion, as depicted
in Figure 1. Denote 1, as the normal vector
of p, in the contour of a breast lesion. The
k-curve angle of p; in the contour is defined
as B;(k) = sgn(fl., X A,_,)cos™ (A, Ay,
where f,,, X fi,_, is the outer product of
. and i, A;, - A, is the inner product
of ;. and A, ,, and sgn takes the polarity
of fi,, X f;_,, which would be positive if
Ay, X N, points upward.

A point p, is defined as a convex point if
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Figure 8. In bar graph, each pair of vertical bars indicates the mean A, value and mean best

classification accuracy achieved with a Giger feature with the first set of US images. Error bars
indicate 1 SD. All these teatures (NRG = normalized radial gradient) are worse than NSPD, ENS,

and ENC at the 5% significance level.

8,(k) = 8, where b, is a prespecified positive
threshold value. Similarly, a point p; is de-
fined as a concave point if h; = \/2 pixels
and h; is the local maximum among the
neighborhood of p; and 6,(k) = 8, where 6,
is a prespecified negative threshold value.
The threshold \/2 pixels, which is the dis-
tance between two diagonal pixels, is set to
eliminate undesirable depression caused by

“the unsteady delineation process. If two

consecutive convex points do not have any
concave point in between, the one with the
smaller k-curve angle is eliminated. Like-
wise, if two consecutive concave points do
not have any convex point in between, the
one with the smaller depression depth is
removed. Let A = {A\;, A5,.., A} and O =
{wy, w,,. .., w,} be the set of points after
redundant points have been removed,
where p and d are the numbers of points in
each set. Then, each point A;in A s called a
representative convex point that defines a
substantial protuberance and each point w,
in () is called a representative concave point
that defines a substantial depression.

Empirically, 8, was determined in consid-
eration of two conflicting observations. On
one hand, it is common to tind a depression
with a slowly varying contour (ie, the k-
curve angle is small) so that 0, should be
kept as small as possible. On the other
hand, it is easy to generate a depression
with a small k-curve angle and a small de-
pression depth simply owing to a wobbly
delineation process, which may be consid-
ered as a noise. As a compromise, 0, was set
to —20°, which tolerated 10° of aberration
from the ideal contour for each side of a
concave point.

To determine k, consider a depression
with the smallest possible depression depth

(te, h; = \/2 pixels). One may easily obtain
that k =~ 8 pixels for 8, = —20° by approxi-
mating the depression as a triangle and de-
termining k with the Pythagorean theorem.
When the discrete property of a digital im-
age is taken into account, it is appropriate
to use either k = 7 or 8 to evaluate a depres-
sion under the lower-bound condition (ie,
given h; = \/2 pixels and 6, = —20°). In this
study, k was set to 7 to allow the smaller
depressions and protuberances. Since there
was 1o reasonable constraint for 6,, we de-
cided to determine 6, through learning
from data. More specifically, five 8, values
were considered in this study (ie, 8, € {20°,
30°, 40°, 50°, 60°)), the best of which was
determined by using feature selection.
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